挤公交忘穿内裤被挺进,國產日韓亞洲精品AV,午夜漫画,china中国gary廖男男

什么是機器學(xué)習(xí)?

  許多人將機器學(xué)習(xí)視為通向人工智能的途徑,但是對于統(tǒng)計學(xué)家或商人而言,機器學(xué)習(xí)也可以是一種強大的工具,可以實現(xiàn)前所未有的預(yù)測結(jié)果。

  為什么機器學(xué)習(xí)如此重要?

  在開始學(xué)習(xí)之前,我們想花一些時間強調(diào)WHY機器學(xué)習(xí)非常重要。

  總之,每個人都知道人工智能或人工智能。通常,當我們聽到AI時,我們會想象機器人到處走動,執(zhí)行與人類相同的任務(wù)。但是,我們必須了解,雖然有些任務(wù)很容易,但有些任務(wù)卻很困難,并且距離擁有像人類一樣的機器人還有很長的路要走。

  但是,機器學(xué)習(xí)是非常真實的并且已經(jīng)存在。它可以被視為AI的一部分,因為當我們想到AI時,我們想象的大部分內(nèi)容都是基于機器學(xué)習(xí)的。

  在過去,我們相信未來的這些機器人將需要向我們學(xué)習(xí)一切。但是人腦是復(fù)雜的,并且并非可以輕松描述其協(xié)調(diào)的所有動作和活動。1959年,亞瑟·塞繆爾(Arthur Samuel)提出了一個絕妙的主意,即我們不需要教計算機,但我們應(yīng)該讓他們自己學(xué)習(xí)。塞繆爾(Samuel)也創(chuàng)造了“機器學(xué)習(xí)”一詞,從那時起,當我們談?wù)摍C器學(xué)習(xí)過程時,我們指的是計算機自主學(xué)習(xí)的能力。

  機器學(xué)習(xí)有哪些應(yīng)用?

  在準備這篇文章的內(nèi)容時,我寫下了沒有進一步說明的示例,假定所有人都熟悉它們。然后我想:人們知道這些是機器學(xué)習(xí)的例子嗎?

  讓我們考慮一些。

  自然語言處理,例如翻譯。如果您認為百度翻譯是一本非常好的字典,請再考慮一下。百度翻譯本質(zhì)上是一組機器學(xué)習(xí)算法。百度不需要更新百度 Translate;它會根據(jù)不同單詞的使用情況自動更新。

  哦,哇 還有什么?

  雖然仍然是主題,但Siri,Alexa,Cortana都是語音識別和合成的實例。有些技術(shù)可以使這些助手識別或發(fā)音以前從未聽過的單詞。他們現(xiàn)在能做的事令人難以置信,但在不久的將來,它們將給人留下深刻的印象!

  SPAM過濾。令人印象深刻,但值得注意的是,SPAM不再遵循一組規(guī)則。它自己了解了什么是垃圾郵件,什么不是垃圾郵件。

  推薦系統(tǒng)。Netflix,淘寶,F(xiàn)acebook。推薦給您的所有內(nèi)容都取決于您的搜索活動,喜歡,以前的行為等等。一個人不可能像這些網(wǎng)站一樣提出適合您的推薦。最重要的是,他們跨平臺,跨設(shè)備和跨應(yīng)用程序執(zhí)行此操作。盡管有些人認為它是侵入性的,但通常情況下,數(shù)據(jù)不是由人處理的。通常,它是如此復(fù)雜,以至于人類無法掌握它。但是,機器將賣方與買方配對,將電影與潛在觀眾配對,將照片與希望觀看的人配對。這極大地改善了我們的生活。

  說到這,淘寶擁有如此出色的機器學(xué)習(xí)算法,它們可以高度確定地預(yù)測您將購買什么以及何時購買。那么,他們?nèi)绾翁幚磉@些信息?他們將產(chǎn)品運送到最近的倉庫,因此您可以在當天訂購并收到產(chǎn)品。難以置信!

  金融機器學(xué)習(xí)

  我們名單上的下一個是金融交易。交易涉及隨機行為,不斷變化的數(shù)據(jù)以及從政治到司法的各種因素,這些因素與傳統(tǒng)金融相距甚遠。盡管金融家無法預(yù)測很多這種行為,但是機器學(xué)習(xí)算法會照顧到這種情況,并且對市場的變化做出響應(yīng)的速度比人們想象的要快。

  這些都是業(yè)務(wù)實現(xiàn),但還有更多。您可以預(yù)測員工是否會留在公司或離開公司,或者可以確定客戶是否值得您光顧-他們可能會從競爭對手那里購買還是根本不購買。您可以優(yōu)化流程,預(yù)測銷售,發(fā)現(xiàn)隱藏的機會。機器學(xué)習(xí)為機會開辟了一個全新的世界,對于在公司戰(zhàn)略部門工作的人們來說,這是一個夢想成真。

  無論如何,這些已在這里使用。然后,我們將進入自動駕駛汽車的新境界。

  機器學(xué)習(xí)算法

  直到最近幾年,無人駕駛汽車還是科幻小說。好吧,不再了。自動駕駛汽車已經(jīng)驅(qū)動了數(shù)百萬英里(即使不是數(shù)十億英里)。那是怎么發(fā)生的?沒有一套規(guī)則。而是一組機器學(xué)習(xí)算法,使汽車學(xué)習(xí)了如何極其安全有效地駕駛。

  我們可以繼續(xù)學(xué)習(xí)幾個小時,但我相信您的主旨是:“為什么要使用機器學(xué)習(xí)”。

  因此,對您來說,這不是為什么的問題,而是如何的問題。

  這就是我們的Python機器學(xué)習(xí)課程所要解決的問題。蓬勃發(fā)展的數(shù)據(jù)科學(xué)事業(yè)中最重要的技能之一-如何創(chuàng)建機器學(xué)習(xí)算法!

  如何創(chuàng)建機器學(xué)習(xí)算法?

  假設(shè)我們已經(jīng)提供了輸入數(shù)據(jù),創(chuàng)建機器學(xué)習(xí)算法最終意味著建立一個輸出正確信息的模型。

  現(xiàn)在,將此模型視為黑匣子。我們提供輸入,并提供輸出。例如,考慮到過去幾天的氣象信息,我們可能想創(chuàng)建一個預(yù)測明天天氣的模型。我們將輸入模型的輸入可以是度量,例如溫度,濕度和降水。我們將獲得的輸出將是明天的天氣預(yù)報。

  現(xiàn)在,在對模型的輸出感到滿意和自信之前,我們必須訓(xùn)練模型。訓(xùn)練是機器學(xué)習(xí)中的核心概念,因為這是模型學(xué)習(xí)如何理解輸入數(shù)據(jù)的過程。訓(xùn)練完模型后,我們可以簡單地將其輸入數(shù)據(jù)并獲得輸出。

  如何訓(xùn)練機器學(xué)習(xí)算法?

  訓(xùn)練算法背后的基本邏輯涉及四個要素:

  a.數(shù)據(jù)

  b.模型

  c.目標函數(shù)

  d.優(yōu)化算法

  讓我們探索每個。

  首先,我們必須準備一定數(shù)量的數(shù)據(jù)進行訓(xùn)練。

  通常,這是歷史數(shù)據(jù),很容易獲得。

  其次,我們需要一個模型。

  我們可以訓(xùn)練的最簡單模型是線性模型。在天氣預(yù)報示例中,這將意味著找到一些系數(shù),將每個變量與它們相乘,然后將所有結(jié)果求和以得到輸出。但是,正如我們稍后將看到的那樣,線性模型只是冰山一角。依靠線性模型,深度機器學(xué)習(xí)使我們可以創(chuàng)建復(fù)雜的非線性模型。它們通常比簡單的線性關(guān)系更好地擬合數(shù)據(jù)。

  第三個要素是目標函數(shù)。

  到目前為止,我們獲取了數(shù)據(jù),并將其輸入到模型中,并獲得了輸出。當然,我們希望此輸出盡可能接近實際情況。大數(shù)據(jù)分析機器學(xué)習(xí)AI入門指南https://www.aaa-cg.com.cn/data/2273.html這就是目標函數(shù)出現(xiàn)的地方。它估計平均而言,模型輸出的正確性。整個機器學(xué)習(xí)框架歸結(jié)為優(yōu)化此功能。例如,如果我們的函數(shù)正在測量模型的預(yù)測誤差,則我們希望將該誤差最小化,或者換句話說,將目標函數(shù)最小化。

  我們最后的要素是優(yōu)化算法。它由機制組成,通過這些機制我們可以更改模型的參數(shù)以優(yōu)化目標函數(shù)。例如,如果我們的天氣預(yù)報模型為:

  明天的天氣等于:W1乘以溫度,W2乘以濕度,優(yōu)化算法可能會經(jīng)過以下值:

  W1和W2是將更改的參數(shù)。對于每組參數(shù),我們將計算目標函數(shù)。然后,我們將選擇具有最高預(yù)測能力的模型。我們怎么知道哪一個最好?好吧,那將是具有最佳目標函數(shù)的那個,不是嗎?好的。大!

  您是否注意到我們說了四個成分,而不是說了四個步驟?這是有意的,因為機器學(xué)習(xí)過程是迭代的。我們將數(shù)據(jù)輸入模型,并通過目標函數(shù)比較準確性。然后,我們更改模型的參數(shù)并重復(fù)操作。當我們達到無法再優(yōu)化或不需要優(yōu)化的程度時,我們將停止,因為我們已經(jīng)找到了解決問題的足夠好的解決方案。

https://www.toutiao.com/i6821026294461891086/

主站蜘蛛池模板: 大荔县| 吉林省| 上林县| 临海市| 武冈市| 凤翔县| 准格尔旗| 海伦市| 安仁县| 从江县| 故城县| 宁蒗| 绥宁县| 安达市| 肃宁县| 桃园县| 武威市| 渝中区| 镇江市| 古浪县| 隆化县| 泰安市| 保定市| 霍山县| 乡城县| 绿春县| 桦甸市| 丁青县| 平江县| 吴江市| 左贡县| 松原市| 名山县| 丹寨县| 高阳县| 蕉岭县| 辉南县| 电白县| 灵台县| 托克托县| 周至县|